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In the steel industry, excessive vibration in the rotating machinery may produce uncomfortable noise and 
even cause catastrophic failure. Among the reasons that lead to this above problem, the major one is rotor 
imbalance. The imbalance denotes the non-uniform distribution of mass in the rotor, which may be due to 
corrosion or adhesion of extraneous particles. In this report, we introduce an on-line balancing system for the 
wire laying head. The system was developed by China Steel (CSC) and is aimed at the single-plane rotor bal-
ancing process. The balancing system is composed of an accelerometer, a probe sensor and software. In order 
to determine whether the accelerometer can be adopted for the subsequent balancing, we also developed a 
sensor checking method that is performed before the balancing process. With the assistance of the system, the 
mechanical personnel can proceed with the balancing process efficiently and prevent the production machines 
from unexpected failure. 
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1. INTRODUCTION 

The ideal rotating machine rotor should be sym-
metrical in geometry and uniform in mass. Conse-
quently, it is expected that the rotating element can  
rotate smoothly without significant vibration. However, 
due to some operational requirements, like slots or 
keys, or other reasons, such as rustiness or adherence of 
material, the rotating element would become unbal-
anced gradually and exhibit excessive vibration. The 
situation may lead to machine fatigue, wear or internal 
friction, which eventually cause machine failures. The 
typical practice to perform balancing is by the graphical 
method, as illustrated in Fig.1. This heavily requires 
well-trained personnel with experience and skill. In 
order to avoid this situation, we developed an online 
balancing system in the wire laying head, so that the 
balance can be restored to an acceptable level without 
requirement of professional skills. The system is aimed 
at the single-plane rotor balancing process(1) and is 
consisted of an accelerometer (vibration sensor), a 
probe sensor and software. 

Since an accelerometer is a key component to 
measure vibration, to determine whether it can function 
appropriately is important. The conventional way to 
check an accelerometer is by the BOV method(2).  
Another proprietary method adopted at China Steel (CSC) 

 

 

Fig.1.  A graphical way for single plane balancing. 
 

is to send a excitation signal to the sensor and observe 
visually whether its response is conformable to specific 
patterns(3). However, the process not only relies on  
experienced personnel but also is hardware dependent. 
This means that the response is different when the  
accelerometer and signal acquisition hardware are 
changed. In order to overcome the difficulty, we pro-
pose a machine-learning based method which can  
automatically build a prediction model according to the 
presented signals. The process starts by collecting sig-
nals from accelerometers of known fault states and then 
extracts features from these signals. The extracted fea-
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tures are then fed into a decision-tree learning machine 
to build a prediction model(4). To determine whether the 
accelerometer of an unknown fault state is healthy or 
not, the features associated with its response signal are 
brought into the prediction model. In addition to dis-
tinguishing whether the accelerometer is healthy or not, 
the model also reports which kind of fault the accel-
erometer is, including short circuitry, open circuitry, 
disconnect and inverse connection. This facilitates 
maintenance personnel for quick trouble shooting. The 
overall procedure is shown in Fig.2. 
 

 

Fig.2.  The sensor checking procedure. 
 

2. THE METHOD OF SINGLE PLANE 
BALANCING 

2.1 Notations for rotor balancing 

In order to perform a balancing process, a proxim-
ity probe sensor and a accelerometer shall be provided. 
They are responsible for measuring the phase and  
vibration respectively. For the rotor with only one 
mark, the probe sensor generates a trigger signal per 
revolution and the rotational frequency, as known as 
1X speed, can be calculated by counting the interval 
between two pulses. Once the rotation frequency is 
obtained, the signal associated with this frequency is 
extracted, the phase and amplitude for the 1X speed can 
be computed accordingly. 

2.2 Two-run single plane balancing 

The influence coefficient H describes how the 
balance changes in terms of vibration when one addi-
tional weight m1 is added to the rotor. Assume the 
original imbalance (1X vibration) is O in the complex 
form. When one trial weight m1 is added to the rotor, 
the imbalance becomes T. The influence factor is given 
by 
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where C denotes the change of imbalance. Since 

both the weight and vibrations are complex, the influ-
ence coefficient H is also a complex number. 

In order to balance the rotor, another weight, m2, 
should be added, so that the resulting amount of bal-
ance change is -O. This cancels out the original imbal-
ance. It turns out that the required weight for m2 is as 
follows. 
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In case m1 is not removed, Equation (2) should be 
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To assist maintenance personnel in balancing, we 
also developed software. The software is realized in a 
Windows system. It retrieves vibration and trigger sig-
nals from the accelerometer and probe sensor, which 
are used to calculate imbalance and rotation speed  
respectively. This information is then employed for 
suggesting how heavy and where to put the correction 
weight. In addition, the software also provides opera-
tion procedures and necessary plots. The self explana-
tion user interface makes the balancing process more 
straightforward and easier for operation, which is illus-
trated in Fig.3. 

 

 

Fig.3.  The user interface for balancing software. 
 
In order to verify the functionality of the balancing 

system, we selected the wire laying heads, which often 
encounter imbalance, for this experiment. The wire 
laying head is located at the end of the high speed wire 
mill and is used to lay the hot-rolled wire into loops on 
a cooling conveyor. In order to ensure high productivi-
ty, the device must operate at a high speed. The typical 
operation speed ranges from 50 to 150 meters per sec-
ond and requires high stability. Figure 4(a) shows the 
arrangement to balance the wire laying head. The lay-
ing head rotates at about 30 Hz in a clockwise direc-



68 The Development of On-Line Balancing System for Rotating Machinery   

tion. A vibration accelerometer and proximity probe 
sensor is installed near the bearing. The trial and cor-
rection weights are mounted at the end of the laying 
head, as shown in Fig.4(b). After balancing, the amount 
of vibration is reduced from the original 15.6 mm / s 
pk-pk to 0.9 mm/s. This indicates that the balancing 
system functions as expected. 

 

 
(a) The allocation of probe sensor and accelerometer 

 
(b) The location to place trial and correction weight 

Fig.4.  The arrangement to balance a wire laying head. 
 

2.3 One-run single plane balancing 

For the method presented in the above section,  
users have to add a trial weight to obtain influence  
coefficients first, and then a final correction weight is 
thus calculated. The method is called two-run balancing 
because the rotor is undertaken two stop-and-start pro-
cedures. The disadvantage of two-run balancing is that 
multiple overhauls are time-consuming. 

In view of this drawback, we have developed the 
so-called one-run method. The principle is to adopt 
influence coefficients that are previously made in the 
conventional two-run practice to suggest a correction 
weight in an one-shot manner. Figure 5 is the software 
that integrates two-run and one-run balancing. Once a 
two-run balancing process is completed, the corre-
sponding influence coefficient as well as date infor-
mation are recorded. When a balancing process should 

be carried out, the software will suggest a trial weight 
by means of influence coefficient previously made and 
imbalance vibration in the meanwhile. The calculation 
method follows Equation (2). After adding the correc-
tion weight, the user observes whether the reduction in 
vibration meets the operational requirement. If so, the 
user can stop the experiment and operations can pro-
ceed. Otherwise, the conventional two-run balancing 
process is performed and a new influence coefficient is 
re-computed. Take Fig.5 for example, the original  
vibration was 5.87 mm/s. After the first trial, the vibra-
tion was reduced to 2.11 mm/s. If the balancing process 
is proceeded, the final vibration is further reduced to 
0.37 mm/s. The method can be improved to cases of 
multiple influence coefficients. For instance, an influ-
ence coefficient can be built for each imbalance level. 
The calculated correction weight would more precisely 
accommodate to the current imbalance and thus a sub-
stantial reduction in vibration is more easy to obtain. 

 

 

Fig.5.  The software that integrates two-run and one-run 
balancing. 

 

3. THE SENSOR CHECKING METHOD 

The sensor checking process is divided into the 
following steps: data collection, model training and 
on-line prediction. For the first stage, it manages to 
collect signals from accelerometers of known fault 
states and extracts relevant features. Then, the collected 
features as well as associated fault states are combined 
together into a training dataset (as shown in Fig.2). The 
dataset is used to build a decision tree model. The 
model can be deployed on-line to determine the health 
state of an accelerometer and what kind of fault the 
accelerometer has, including short circuitry, open cir-
cuitry, disconnection and inverse connection. The typi-
cal AD and DC signals, which are obtained by sending 
an accelerometer a 4-mA current and acquiring its  
response in AD or DC mode, are shown in Fig.6 . 
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(a) inverse connection 

 
(b) normal state 

 
(c) disconnection 

 
(d) short circuitry 

 
(e) open circuitry 

Fig.6.  Typical AC/DC signals for accelerometers of 
various states. 

 

3.1 Data collection 

In this report, we adopted two categories of fea-
tures to encode signals. The first one was histogram- 
based feature, and the other one time-domain feature.  

A histogram, as shown in Fig.7 (a), records the 
number of occurrences, also known as frequency, for 
each kind of event and arranges them in a bar chart. 
Since the event, usually located in the horizontal axis, 
is shown in a discrete manner, continuous variables 
should be converted into discrete events or bins. The 
way to partition continuous variables into discrete 
events is called binning. 

 

 

Fig.7.  Histogram examples. 
 
In this report, the original excited signals, includ-

ing AC and DC ones, are first normalized as follows. 
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In the above equation, xi, where i =1~N, denotes 
the original excited signals, and μ and σ are the 
mean and standard deviation, respectively. Each nor-
malized signal is then subjected to an outlier removal 
and histogram processing. The outlier removal thresh-
old is set to be μ±3σ and the bin number is fixed to 
50. 

We first select five template signals, which are  
associated with normal, short circuitry, open circuitry, 
disconnection and inverse connection, and calculate 
their normalized histograms. For a given signal, a cor-
relation coefficient is made between its normalized 
histogram and each normalized one of the above tem-
plate signals. Since there are totally five AD and DC 
templates, ten histogram-based features are extracted. 

For the time-domain features, a time series is par-
titioned into several regions. In the example shown in 
Fig.8, the number of regions is seven. Data in each  
region is averaged and a mean value is obtained.   
Besides, differences of mean values between adjacent 
regions are calculated and then compared with a 
threshold, such as 10% standard deviation of the entire 
signal. If a difference is greater than one plus or minus 
threshold, an +1 or -1 is designated. Otherwise, a 0 is 
output. For a AC signal of seven regions, there are 7 + 
6 = 13 features. Combining the DC signal, a total of 26 
features are extracted. All the above features are named 
in a prefix AC or DC plus serial numbers, like AC001, 
AC002, AC003 etc. 

 

 

Fig.8.  Time-domain features. 
 

3.2 Model training and validation 

Decision trees (DTs) belong to one of the 
non-parametric supervised learning methods and are 
widely used for both classification and regression tasks. 
The learning goal is to construct a model that predicts 
the value of a target variable by deriving simple deci-
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sion rules inferred from the training data. A decision 
tree is composed of nodes, each of which is represented 
by a “IF…Then...Else…” form. The main advantage 
for this type of model is ease of interpretation and can 
be visualized, as illustrated in Fig.9. 

 

 

Fig.9.  A decision tree of sensor checking model. 
 
After a decision tree is trained, it can be used for 

on-line prediction. That is, the fault state of any    
incoming signal can be determined by the tree. The 
prediction process starts by extracting features from the 
signal and searching the tree from its root node to leaf 
nodes. The search process continues until a consistent 
path, from the root node to leaf node, is found. A path 

is consistent if all conditions along the path are met. 
Take Fig.9 for example, the first condition to check is 
whether the AC002 feature is greater than 0.97. If the 
condition is met, the search path will follow the “yes” 
branch. Otherwise, the “no” branch will be adopted and 
the next condition “AC003>=0.71” is checked again. 
Each leaf node represents the final decision that the tree 
mode reports. 

In this report, we adopted a cross validation to 
examine the performance of the built-in prediction 
model. In the case of a 10-fold cross-validation, the 
original data is divided into ten equal parts, among 
which nine of them are used for training and the rest of 
the data is used for validation. This process is repeated 
ten times until all validation data has been tested and 
the average performance is calculated. In Table 1, for 
example, a total of 820 pieces of data are used for the 
experiments. There are a total of five categories of data 
and the number of each piece of data for each category 
ranges between 163 to 165. The results show that  
except for five among the 165 open pieces of data are 
misclassified as inverse, the remaining ones are cor-
rectly classified. The average error rate is 1.22%. The 
experiments are also made on different brands of signal 
acquisition hardware, as illustrated in Table 2, and sim-
ilar results are obtained. This means that the proposed 

Table 1  A confusion table for the Brand A signal acquisition hardware 

10-fold CV error rate: 1.22% 

 disconnection inverse normal open short Sum 

disconnection 163 0 0 0 0 163 

inverse 0 160 0 5 0 165 

normal 0 0 164 0 0 164 

open 0 5 0 160 0 165 

short 0 0 0 0 163 163 

Sum 163 165 164 165 163 820 

 

Table 2  A confusion table for the Brand B signal acquisition hardware 

10-fold CV error rate: 1.34% 

 disconnection inverse normal open short Sum 

disconnection 163 0 0 0 0 163 

inverse 0 160 0 5 0 165 

normal 0 0 164 0 0 164 

open 0 4 0 161 0 165 

short 0 0 0 0 163 163 

Sum 163 164 164 166 163 820 
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features are sufficient and decision trees are capable of 
extracting the knowledge underlying the data. 

4. CONCLUSION 

In this report, we introduce an on-line balancing 
system for a rotary machine. The system was aimed at 
the single-plane rotor balancing process and has been 
validated on the wire laying head. We also developed 
software, which can help maintenance personnel to 
perform balancing tasks efficiently. Beside the balanc-
ing system, we proposed an accelerometer checking 
methodology, which can quickly help maintenance 
personnel identify whether accelerometers can function 
appropriately. To make the checking procedure less 
hardware dependent, we propose to extract relevant 
features that are incorporated with decision trees to 
make the process more universal. Experimental results 
reveal that our methods can be applied to different 
hardware and the performance is sufficient enough for 
practical applications. With the assistance of the sys-

tem, the mechanical personnel can proceed with the 
balancing process efficiently and prevent the produc-
tion machines from unexpected failure. 
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